
* Both authors contributed equally to the paper. 1

RICC: Robust Collective Classification 
of Sybil Accounts

Dongwon Shin*, Suyoung Lee*, and Sooel Son

KAIST

TheWebConf 2023



Fake User Accounts

Benign Accounts Fake Accounts

2

https://socialnetworks.com

KAIST WSP Lab
27m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant



Fake User Accounts

Benign Accounts Fake Accounts

3

https://socialnetworks.com

KAIST WSP Lab
27m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant



Fake User Accounts

Benign Accounts Fake Accounts

4

https://socialnetworks.com

KAIST WSP Lab
27m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant

Sybil accounts



Sybil Accounts

Benign Accounts Sybil Accounts

5

User 2

User 3

User 9427User 1

https://socialnetworks.com

KAIST WSP Lab
27m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant



Sybil Accounts

Benign Accounts Sybil Accounts

6

User 2

User 3

User 9427User 1

I have something for you!
http://spam.com  CLICK! 

Fake Account

https://socialnetworks.com

KAIST WSP Lab
28m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant



Sybil Accounts

Benign Accounts Sybil Accounts

7

User 2

User 3

User 9427User 1

https://socialnetworks.com

KAIST WSP Lab
28m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant

I have something for you!
http://spam.com  CLICK! 

Fake Account

1.3B
# of blocked fake Facebook users*

* https://about.fb.com/news/2021/03/how-were-tackling-misinformation-across-our-apps/



Sybil Accounts

Benign Accounts Sybil Accounts

8

User 2

User 3

User 9427User 1

https://socialnetworks.com

KAIST WSP Lab
28m · 

* TheWebConf 2023 Accepted our Paper *

- Dongwon Shin, Suyoung Lee, and Sooel Son. RICC: 
Robust Collective Classification of Sybil Accounts. 
TheWebConf 2023…. See more

9.7K

7.2K Shares

Most relevant

I have something for you!
http://spam.com  CLICK! 

Fake Account

Sybil accounts impose a critical threat!



Graph-based Sybil Account Detection

9

Benign Accounts Sybil Accounts

User A

User B User C

User D User E

User F

User HUser G

Graph-based 
Modeling

B C

A H

F

G

ED



Graph-based Sybil Account Detection

10

Benign Accounts Sybil Accounts

User A

User B User C

User D User E

User F

User HUser G

Graph-based 
Modeling

B C

A H

F

G

ED

Node classification problem!



Collective Classification

Graph structure

11

ED

C

A H

FB

G



Collective Classification

Graph structure

12

ED

C

A H

FB

G



Collective Classification

Graph structure

13

ED

C

A H

FB

G



Collective Classification

Graph structure

14

ED

C

A H

FB

G



ED

C

A H

F

Collective Classification

Graph structure

B

G

15



F H

A

Collective Classification

Graph structure

Benign nodeC

Sybil node

16

Training set

ED

C

A H

FB

G



Collective Classification

Graph structure
Collective 

Classification (CC)

17

ED

C

A H

FB

G

F H

A Benign nodeC

Sybil node

Training set



Collective Classification

Graph structure
Collective 

Classification (CC)

18

Classification result

Benign Node Sybil Node

B

H

F

ED

A

C

G
ED

C

A H

FB

G

F H

A Benign nodeC

Sybil node

Training set



B

H

F

ED

A

C

G

Collective Classification

Classification result

Graph structure
Collective 

Classification (CC)

19

Benign Node Sybil Node

- SybilLimit, S&P ’08

- SybilInfer, NDSS ’09

- SybilRank, NSDI ‘12

- SybilSCAR, INFOCOMM ’17

- GANG, ICDM ‘17

- JWP, NDSS ’19
ED

C

A H

FB

G

F H

A Benign nodeC

Sybil node

Training set



ED

C

A H

FB

G

B

H

F

ED

A

C

G

Collective Classification

Classification result

Graph structure
Collective 

Classification (CC)

20

Benign Node Sybil Node

- SybilLimit, S&P ’08

- SybilInfer, NDSS ’09

- SybilRank, NSDI ‘12

- SybilSCAR, INFOCOMM ’17

- GANG, ICDM ‘17

- JWP, NDSS ’19

I know the training set!

F H

A Benign nodeC

Sybil node

Training set



F H

A Benign nodeC

Sybil node

Training set

ED

C

A H

FB

G

B

H

F

ED

A

C

G

Collective Classification

Classification result

Graph structure
Collective 

Classification (CC)

21

Benign Node Sybil Node

- SybilLimit, S&P ’08

- SybilInfer, NDSS ’09

- SybilRank, NSDI ‘12

- SybilSCAR, INFOCOMM ’17

- GANG, ICDM ‘17

- JWP, NDSS ’19

A strong adversary can bypass CC!

* Binghui Wang and Neil Zhenqiang Gong. Attacking Graph-based Classification via Manipulating the Graph Structure. CCS 2019
** Xu et al. Attacking Graph-Based Classification without Changing Existing Connections. ACSAC 2020
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These attacks destroyed existing CC algorithms!

* Gong et al. SybilBelief: A Semi-supervised Learning Approach for Structure-based Sybil Detection. IEEE TIFS 2014
** Wang et al. SybilSCAR: Sybil Detection in Online Social Networks via Local Rule based Propagation. INFOCOMM 2017

*** Wang et al. Structure-based Sybil Detection in Social Networks via Local Rule-based Propagation. IEEE TNSE 2018.
**** Wang et al. Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation. NDSS 2019
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Possible graph manipulations

• To which node does the adversary connect adversarial edges?
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Evaluation



Datasets

• Four datasets: Enron, Facebook, Twitter_S, and Twitter_L

57

Dataset Enron Facebook Twitter_S Twitter_L

# of nodes 67K+ 8K+ 8K+ 21M+

# of edges 371K+ 176K+ 54K+ 265M+

Node degree 11 44 13 25

These graphs cover diverse scenarios!
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vs. State-of-the-art Collective Classification

64

Dataset
FNR (↓) AUC (↑) 

RICC SybilSCAR* JWP** RICC SybilSCAR* JWP**

Enron 0.01 1.00 1.00 0.9912 0.9884 0.9875

Facebook 0.11 0.95 0.97 0.9995 0.9372 0.9551

Twitter_S 0.00 1.00 0.99 0.8911 0.7117 0.6921

Twitter_L 0.01 1.00 1.00 0.7388 0.7371 0.7375

* Wang et al. SybilSCAR: Sybil Detection in Online Social Networks via Local Rule based Propagation. INFOCOMM 2017
** Wang et al. Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation. NDSS 2019
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• False negative rate (FNR) of target nodes

The attack destroyed SybilSCAR and JWP!
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• False negative rate (FNR) of target nodes

The attack destroyed SybilSCAR and JWP!

Use the exposed training set!
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• False negative rate (FNR) of target nodes

RICC correctly identified target nodes!
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• False negative rate (FNR) of target nodes

RICC correctly identified target nodes!

Use randomly sampled training sets!
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• Area under the curve (AUC)

RICC correctly classified other nodes!



For More Details
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• Effect of the attacker’s strategy

• Rationale behind our observations

• Effect of the attacker’s budget

• Effect of the hyperparameters

• RICC vs. GNN

• https://github.com/WSP-LAB/RICC

• Random sampling-based collective classification algorithms

https://github.com/WSP-LAB/RICC


• We made a novel observation that adversarial attacks are 
highly tailored to the training set.
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Conclusion

If you have more questions, please email dongwon.shin@kaist.ac.kr
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