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Graph-based Sybil Account Detection

Node classification problem!
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* Binghui Wang and Neil Zhengiang Gong. Attacking Graph-based Classification via Manipulating the Graph Structure. CCS 2019
** Xu et al. Attacking Graph-Based Classification without Changing Existing Connections. ACSAC 2020
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Adversarial Attacks against CC
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Adversarial Attacks against CC [. senign Node () 9bi Node]
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Adversarial Attacks against CC

r

Node G is now identified
as a benign node!

[. Benign Node . Sybil Node}




* Gong et al. SybilBelief: A Semi-supervised Learning Approach for Structure-based Sybil Detection. IEEE TIFS 2014
** Wang et al. SybilSCAR: Sybil Detection in Online Social Networks via Local Rule based Propagation. INFOCOMM 2017
*** Wang et al. Structure-based Sybil Detection in Social Networks via Local Rule-based Propagation. IEEE TNSE 2018.
**+* \Wang et al. Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation. NDSS 2019



Our Goal

Building Robust CC of Sybil Accounts!




Our Goal

We propose RICC!



Our Observation on the Manipulated Graphs
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Our Observation on the Manipulated Graphs

» To which node does the adversary connect adversarial edges?
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Our Observation on the Manipulated Graphs
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Original graph
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Our Observation on the Manipulated Graphs
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Possible graph manipulations
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Our Observation on the Manipulated Graphs

» To which node does the adversary connect adversarial edges?

Our observation

Adversarial edges are connected
to benign nodes in a training set!

Original graph
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Our Observation on the Manipulated Graphs

» To which node does the adversary connect adversarial edges?
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Our Observation on the Manipulated Graphs

» To which node does the adversary connect adversarial edges?
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Our Observation on the Manipulated Graphs

» To which node does the adversary connect adversarial edges?

[“ Benign node}

Training set

Manipulated graph

Original graph

Possible graph manipulations
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These attacks are tailored to the training set!




Our Motivation
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Our Motivation
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Our Motivation
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Our Motivation
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Our Motivation
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Our Motivation

Different training set = Reliable classification!




Towards Reliable Classification Results
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Towards Reliable Classification Results
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Towards Reliable Classification Results

%‘ Benign node}

Original training set

<]
Correctly identified Node G!
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Towards Reliable Classification Results
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RICC gradually guides CC to output reliable results’




Random Sampling-based Collective Classification

Original training set
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Random Sampling-based Collective Classification

Original training set Sampled set I
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Random Sampling-based Collective Classification

Original training set Sampled set I
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Random Sampling-based Collective Classification

Original training set Sampled set I
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Random Sampling-based Collective Classification

Original training set Sampled set 1 coe Sampled set N
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Evaluation
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Datasets

« Four datasets: Enron, Facebook, Twitter_S, and Twitter_L

Dataset Enron Facebook  Twitter S Twitter L
# of nodes 67K+ 8K+ 8K+ 2TM+
# of edges 371K+ 176K+ 54K+ 265M+
Node degree 11 44 13 25

These graphs cover diverse scenarios!

m' ST @M}b Security
& Privacy Lab
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AttaCk Scena I‘iO [. Benign Node . Sybil Node . Target Node]
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Evaluation MEtI‘iCS [. Benign Node . Sybil Node . Target Node]
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Goal 1. Identitying all target nodes!’




Evaluation MEtI‘iCS [. Benign Node . Sybil Node . Target Node]
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Goal 1. Low false negative rate of target nodes!




Evaluation MEtI‘iCS [. Benign Node . Sybil Node . Target Node]
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Goal 2. Correctly classitying all nodes!’




Evaluation Metrics [. Benign Node . Sybil Node . Target Node]
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vs. State-of-the-art Collective Classification

Dataset

FNR (1)

AUC (1)

RICC

SybilSCAR*

JWP**

RICC SybilSCAR*

JWP**

Enron
Facebook
Twitter S

Twitter L

0.01
0.11
0.00

0.01

1.00
0.95
1.00
1.00

1.00

0.97

0.99

1.00

0.9912 0.9884
0.9995 0.9372
0.8911 0.7117

0.7388 0.7371

0.9875
0.9551
0.6921

0.7375

KAIST

Web Security
& Privacy Lab

* Wang et al. SybilSCAR: Sybil Detection in Online Social Networks via Local Rule based Propagation. INFOCOMM 2017

** Wang et al. Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation. NDSS 2019
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vs. State-of-the-art Collective Classification

 False negative rate (FNR) of target nodes

FNR (1)
Dataset -
RICC SybilSCAR* JWP**
Enron 0.01 1.00 1.00
Facebook 0.11 0.95 0.97
Twitter S 0.00 1.00 0.99
Twitter L 0.01 1.00 1.00

The attack destroyed SybilSCAR and JWP!

m' ST @Nab Security
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vs. State-of-the-art Collective Classification

 False negative rate (FNR) of target nodes

7

Use the exposed training set! J

Dataset
RICC  “—SYDUWSCTAR™JW 7 —

Enron 0.01 1.00 1.00 £
Facebook 0.11 0.95 0.97
Twitter_S 0.00 1.00 0.99
Twitter_L 0.01 1.00 1.00

The attack destroyed SybilSCAR and JWP!
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vs. State-of-the-art Collective Classification

 False negative rate (FNR) of target nodes

FNR (1)
Dataset -
RICC SybilSCAR* JWP**
Enron 0.01 1.00 1.00
Facebook 0.11 0.95 0.97
Twitter S 0.00 1.00 0.99
Twitter L 0.01 1.00 1.00

RICC correctly identified target nodes!
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vs. State-of-the-art Collective Classification

 False negative rate (FNR) of target nodes

)

Use randomly sampled training sets! J

Dataset RICC —
Enron 0.01 VLOO/_-N:;O
Facebook 0.11 0.95 0.97
Twitter_S 0.00 1.00 0.99
Twitter_L 0.01 1.00 1.00

RICC correctly identified target nodes!
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vs. State-of-the-art Collective Classification

 Area under the curve (AUQ)

FNR (1) AUC (1)
Dataset - )
RICC SybilSCAR* JWP** RICC SybilSCAR* JWP**
Enron 0.01 1.00 1.00 0.9912 0.9884 0.9875
Facebook 0.11 0.95 0.97 0.9995 0.9372 0.9551
Twitter S 0.00 1.00 0.99 0.8911 0.7117 0.6921
Twitter L 0.01 1.00 1.00 0.7388 0.7371 0.7375

RICC correctly classified other nodes!

m' ST @Nab Security
& Privacy Lab
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For More Details

 Rationale behind our observations

« Random sampling-based collective classification algorithms
« Effect of the attacker’s budget

» Effect of the attacker’s strategy

« Effect of the hyperparameters

 RICC vs. GNN

* https://github.com/WSP-LAB/RICC

m' ST @eb Security
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https://github.com/WSP-LAB/RICC

Conclusion

« We made a novel observation that adversarial attacks are
highly tailored to the training set.
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Conclusion

« We made a novel observation that adversarial attacks are
highly tailored to the training set.

* Leveraging this observation, we propose RICC, a novel CC
framework for the robust identification of Sybil accounts.
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Conclusion

« We made a novel observation that adversarial attacks are
highly tailored to the training set.

* Leveraging this observation, we propose RICC, a novel CC
framework for the robust identification of Sybil accounts.

* RICC significantly outperformed existing CC in terms of
identifying adversarial Sybil accounts.
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Conclusion

« We made a novel observation that adversarial attacks are
highly tailored to the training set.

* Leveraging this observation, we propose RICC, a novel CC
framework for the robust identification of Sybil accounts.

* RICC significantly outperformed existing CC in terms of
identifying adversarial Sybil accounts.

Question?

MIST @mmmw If you have more questions, please email dongwon.shin@kaist.ac.kr
& Privacy Lab
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