RICC: Robust Collective Classification of Sybil Accounts

Dongwon Shin*, Suyoung Lee*, and Sooel Son

KAIST

TheWebConf 2023

Fake User Accounts

& Privacy Lab

Fake User Accounts

& Privacy Lab

Fake User Accounts

Sybil Accounts

Sybil Accounts

& Privacy Lab

KAI5

* https://about.fb.com/news/2021/03/how-were-tackling-misinformation-across-our-apps/

& Privacy Lab

Sybil accounts impose a critical threat!

Graph-based Sybil Account Detection

KAIS1

Web Security & Privacy Lab

Graph-based Modeling

Graph-based Sybil Account Detection

KAIS

Veb Security & Privacy Lab

Training set

Training set

Training set

- SybilLimit, S&P '08
- Sybillnfer, NDSS '09
- SybilRank, NSDI '12
- <u>SybilSCAR</u>, **INFOCOMM '17**

A strong adversary can bypass CC!

Classification result

* Binghui Wang and Neil Zhenqiang Gong. Attacking Graph-based Classification via Manipulating the Graph Structure. CCS 2019 ** Xu et al. Attacking Graph-Based Classification without Changing Existing Connections. ACSAC 2020

Web Security & Privacy Lab

& Privacy Lab

Sybil Node

Benign Node

These attacks destroyed existing CC algorithms!

Manipulated graph

B-C F D E

Classification result

- * Gong et al. SybilBelief: A Semi-supervised Learning Approach for Structure-based Sybil Detection. IEEE TIFS 2014
- ** Wang et al. SybilSCAR: Sybil Detection in Online Social Networks via Local Rule based Propagation. INFOCOMM 2017
 - *** Wang et al. Structure-based Sybil Detection in Social Networks via Local Rule-based Propagation. IEEE TNSE 2018.
 - **** Wang et al. Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation. NDSS 2019

Building Robust CC of Sybil Accounts!

Classification result

We propose RICC!

Classification result

• To which node does the adversary connect adversarial edges?

Our observation

Adversarial edges are connected to **benign** nodes in a **training set**!

Our Observation on the Manipulated Graphs

• To which node does the adversary connect adversarial edges?

37

Our Observation on the Manipulated Graphs

• To which node does the adversary connect adversarial edges?

Our Observation on the Manipulated Graphs

• To which node does the adversary connect adversarial edges?

Benian no<u>de</u>

These attacks are *tailored* to the *training set!*

Original training set

Classification result

Original training set

Classification result

Neb Security & Privacy Lab

KAI51

BDBenign nodeEFSybil node

Different training set

Web Security & Privacy Lab

Manipulated graph

Original training set

Classification result

Manipulated graph

Web Security & Privacy Lab

KAIST

Different training set

Manipulated graph

Original training set

Classification result

Web Security & Privacy Lab

Different training set

Web Security & Privacy Lab

Different training set **→ Reliable** classification!

Different training set

Original training set

Original training set

Randomly sampled training sets

Original training set

Randomly sampled training sets

RICC *gradually guides* CC to output *reliable results*!

Original training set

Original training set

Sampled set I

Original training set

Sampled set I

Original training set

Sampled set I

Evaluation

Datasets

• Four datasets: Enron, Facebook, Twitter_S, and Twitter_L

Dataset	Enron	Facebook	Twitter_S	Twitter_L
# of nodes	67K+	8K+	8K+	21M+
# of edges	371K+	176K+	54K+	265M+
Node degree	11	44	13	25

These graphs cover diverse scenarios!

Η

Goal 1. Identifying all *target nodes*!

Goal 1. Low *false negative rate* of target nodes!

Goal 2. Correctly classifying <u>all nodes</u>!

Goal 2. High *area under the curve*!

Dataset	FNR (↓)			AUC (†)			
	RICC	SybilSCAR*	JWP**	RICC	SybilSCAR*	JWP**	
Enron	0.01	1.00	1.00	0.9912	0.9884	0.9875	
Facebook	0.11	0.95	0.97	0.9995	0.9372	0.9551	
Twitter_S	0.00	1.00	0.99	0.8911	0.7117	0.6921	
Twitter_L	0.01	1.00	1.00	0.7388	0.7371	0.7375	

* Wang et al. SybilSCAR: Sybil Detection in Online Social Networks via Local Rule based Propagation. INFOCOMM 2017 ** Wang et al. Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation. NDSS 2019

• False negative rate (FNR) of target nodes

Dataset	FNR (↓)			AUC (†)			
	RICC	SybilSCAR*	JWP**	RICC	SybilSCAR*	JWP**	
Enron	0.01	1.00	1.00	0.9912	0.9884	0.9875	
Facebook	0.11	0.95	0.97	0.9995	0.9372	0.9551	
Twitter_S	0.00	1.00	0.99	0.8911	0.7117	0.6921	
Twitter_L	0.01	1.00	1.00	0.7388	0.7371	0.7375	

The attack destroyed SybilSCAR and JWP!

• False negative rate (FNR) of target nodes

Dataset		Use the exposed training set! (^)							
Dataset	RICC	SYDIISCAR	JVVP	7 —	SYDIISCAR*	JWP**			
Enron	0.01	1.00	1.00	0.9912	0.9884	0.9875			
Facebook	0.11	0.95	0.97	0.9995	0.9372	0.9551			
Twitter_S	0.00	1.00	0.99	0.8911	0.7117	0.6921			
Twitter_L	0.01	1.00	1.00	0.7388	0.7371	0.7375			

The attack destroyed SybilSCAR and JWP!

• False negative rate (FNR) of target nodes

Dataset	FNR (↓)			AUC (†)		
	RICC	SybilSCAR*	JWP**	RICC	SybilSCAR*	JWP**
Enron	0.01	1.00	1.00	0.9912	0.9884	0.9875
Facebook	0.11	0.95	0.97	0.9995	0.9372	0.9551
Twitter_S	0.00	1.00	0.99	0.8911	0.7117	0.6921
Twitter_L	0.01	1.00	1.00	0.7388	0.7371	0.7375

RICC correctly identified target nodes!

• False negative rate (FNR) of target nodes

	(
Dataset	Use randomly sampled training sets!								
	RICC	7	JVVP	RICC	SybriscAR*	JWP^^			
Enron	0.01	1.00	1.00	0.9912	0.9884	0.9875			
Facebook	0.11	0.95	0.97	0.9995	0.9372	0.9551			
Twitter_S	0.00	1.00	0.99	0.8911	0.7117	0.6921			
Twitter_L	0.01	1.00	1.00	0.7388	0.7371	0.7375			

RICC correctly identified target nodes!

• Area under the curve (AUC)

Dataset	FNR (↓)			AUC (†)			
	RICC	SybilSCAR*	JWP**	RICC	SybilSCAR*	JWP**	
Enron	0.01	1.00	1.00	0.9912	0.9884	0.9875	
Facebook	0.11	0.95	0.97	0.9995	0.9372	0.9551	
Twitter_S	0.00	1.00	0.99	0.8911	0.7117	0.6921	
Twitter_L	0.01	1.00	1.00	0.7388	0.7371	0.7375	

RICC correctly classified other nodes!

For More Details

- Rationale behind our observations
- Random sampling-based collective classification algorithms
- Effect of the attacker's budget
- Effect of the attacker's strategy
- Effect of the hyperparameters
- RICC vs. GNN
- <u>https://github.com/WSP-LAB/RICC</u>

Conclusion

• We made a **novel observation** that adversarial attacks are highly tailored to the training set.

Conclusion

- We made a **novel observation** that adversarial attacks are highly tailored to the training set.
- Leveraging this observation, we propose RICC, <u>a novel CC</u> <u>framework</u> for the robust identification of Sybil accounts.

Conclusion

- We made a **novel observation** that adversarial attacks are highly tailored to the training set.
- Leveraging this observation, we propose RICC, <u>a novel CC</u> <u>framework</u> for the robust identification of Sybil accounts.
- <u>RICC significantly outperformed existing CC</u> in terms of identifying adversarial Sybil accounts.

Conclusion

- We made a **novel observation** that adversarial attacks are highly tailored to the training set.
- Leveraging this observation, we propose RICC, <u>a novel CC</u> <u>framework</u> for the robust identification of Sybil accounts.
- <u>RICC significantly outperformed existing CC</u> in terms of identifying adversarial Sybil accounts.

Question?

If you have more questions, please email dongwon.shin@kaist.ac.kr