You Only Perturb Once: Bypassing (Robust) Ad-Blockers Using Universal Adversarial Perturbations

Dongwon Shin*, Suyoung Lee*, Sanghyun Hong† and Sooel Son*

*KAIST, †Oregon State University

ACSAC 2024

○ ○ ○ https://news.com

000	https://news.com

HTML

```
<body>
<iframe src = 'http://ad.com/show_ad'>
...
<script src = 'http://ad.com/track_user.js'>
...
</body>
```


They track users' browsing history!

ATS blockers

ATS blockers

ATS blockers block resources fetched from ATS providers!

9

Web Security & Privacy Lab

KAIST

University Oregon State

ML-based ATS Blockers

Abusive ATS publishers and providers may seek to bypass ATS blockers to maximize their profit!

Can ATS publishers/providers bypass these ATS blockers?

Abusive ATS publishers and providers may seek to bypass ATS blockers to maximize their providers

Optimize perturbation (δ) **on this request node** to bypass the ATS blocker!

KAI51

Optimize perturbation (δ) **on this request node** to bypass the ATS blocker!

Limitation of Per-Sample Attacks

Limitation of Per-Sample Attacks

Request URL	# of Nodes	URL Length		
http://ad.com/track user.js	97	27		2

Can adversaries bypass a target ATS blocker <u>at scale</u>?

Limitation of Per-Sample Attacks

You Only Perturb Once

We propose YOPO!

Our Contributions

- We show that an adversary can generate <u>a single and cost-</u> <u>effective universal perturbation</u> that bypasses recent MLbased ATS blockers.
- We design and implement a novel framework (YOPO) where one can **generate a universal adversarial perturbation (UAP)** against these ATS blockers.
- We propose two new <u>mitigation strategies</u> by analyzing the factors attributing to this vulnerability.

Challenge #1: Perturbation Optimization

• Random forest classifiers are not differentiable.

Poquost LIPI	# of Nodos	LIPI Longth		Non-ATS
http://ad.com/show_ad	97	21		
Extracted features (x)			 Random forest classifier (f)	ATS

• We train a DNN and use it as a surrogate. Request URL # of Nodes URL Length ... http://ad.com/show_ad 98 21 ... Perturbed features $(x + \delta)$ ATS

• Perturbed features should be reflected in an HTML format.

• Perturbed features should be reflected in an HTML format.

Perturbed features should be reflected in an HTML format.

Perturbed features should be <u>reflected in an HTML format</u>.

Perturbed features should be reflected in an HTML format.

Perturbed features should be <u>reflected in an HTML format</u>.

Challenge #3: Preserving Functionalities

• Each feature has <u>a different functionality breakage risk</u> of manipulating it.

HTML

<body>

```
<iframe src = 'http://ad.com/show_ad'>
```

</body>

Original webpage

HTML

<body>

<iframe src = 'http://ad.com/show_ad?1234'>
</body>

Increased the URL length

• Preserves the functionality!

Challenge #3: Preserving Functionalities

- Each feature has <u>a different functionality breakage risk</u> of manipulating it.
 - We <u>designed a cost model</u> that prioritizes which features to manipulate first.

HTML

<body>

```
<iframe src = 'http://ad.com/show_ad'>
```

</body>

Original webpage

Changed its parent tag name Breaks the functionality!

KAIST

Web Security

Oregon State SA

Data Collection for Training a Surrogate Model

108

81

24

29

Labeled features

KAIST

TRUE

TRUF

Web Security

Non-ATS

Non-ATS

0

3

University

https://sec.com/logo.png

https://acsac.org/favicon.ico

Surrogate Model Training

• We selected a four-layer feed-forward neural network as our surrogate.

Request URL	# of Nodes	URL Length	Semicolon	# of Cookie Read	Label
http://ad.com/show_ad	97	21	FALSE	0	ATS
http://ad.com/track_user.js	97	27	FALSE	1	ATS
https://sec.com/logo.png	108	24	TRUE	0	Non-ATS
https://acsac.org/favicon.ico	81	29	TRUE	3	Non-ATS

Data instances

Train

Surrogate model (DNN)

# of Nodes 97 97	URL Length 21 27	Semicolon FALSE FALSE	# of Cookie Read 0 1	Label ATS ATS		# of Nodes +0	URL Length +0	Semicolon FALSE	# of Cookie Re +0	ad
Sa	mpled 4	OK ATS I	nstances (x)			Universal	Adversa	arial Pert	turbation	(δ)
Wo <u>all th</u>	e optim I <mark>ese ins</mark>	nize the stances	perturbati to make i	ion oʻ t univ	ver /ersal!					
(Sur	rogate r	model								
		1			33		KAIST	Web Security & Privacy Lab	Oregon State University	SAI

Optimization goal

1) Bypass the target ATS blocker with a single perturbation

$\underset{\delta}{\operatorname{argmax}} \ \boldsymbol{E}_{(x,y)\sim D_{ATS}}[L_{CE}(f'(\theta, x+\delta), ATS)]$

δ: Perturbation $f'(\theta)$: Surrogate model (DNN) D_{ATS} : Data instances labeled as ATS L_{CE} : Cross-Entropy Loss

Optimization goal

1) Bypass the target ATS blocker with a single perturbation

2) Minimize the breakage risk of manipulating each feature

How can we achieve this goal?

$$\underset{\delta}{\operatorname{argmax}} \ \boldsymbol{E}_{(x,y)\sim D_{ATS}}[L_{CE}(f'(\theta, x+\delta), ATS)]$$

 δ : Perturbation $f'(\theta)$: Surrogate model (DNN) D_{ATS} : Data instances labeled as ATS L_{CE} : Cross-Entropy Loss

Optimization goal

Cost Model

Optimization goal

1) Bypass the target ATS blocker with a single perturbation 2) Minimize the breakage risk of manipulating each feature Considered **a web-specific cost**! $\underset{s}{\operatorname{argm}ax} \ \mathbf{E}_{(x,y)\sim D_{ATS}}[L_{CE}(f'(\theta, x + \delta), ATS)] - C \cdot \|\delta\|$ δ : Perturbation $f'(\theta)$: Surrogate model (DNN)

 D_{ATS} : Data instances labeled as ATS L_{CE} : Cross-Entropy Loss

Cost Model

<body>

<iframe src = 'http://ad.com/show_ad'>

</body>

Original webpage

<script>

<iframe src = 'http://ad.com/show_ad'>

</script>

Changed its parent tag name Breaks the functionality!

Cost Model

Perturbation URL_LENGTH PARENT_TAG_NAME	Assigned Cost 0.2 3	The cost model represents <u>a relative risk of manipulating it</u> .
Cost model		HTML
<body> <iframe src="http://ad.com/show </body></td><td>v_ad"></iframe></body>	<pre><script> <iframe src = 'http://ad.com/show_ad'> </script></pre>	
Original webpage	e '	Changed its parent tag name

Breaks the functionality!

# of Nodes	URL Length	Semicolon	# of Cookie Read
+2	+5	TRUE	+4

Universal Adversarial Perturbation (δ)

# of Nodes	URL Length	Semicolon	# of Cookie Read
97	21	FALSE	0
97	27	FALSE	1

Target ATS instances (*x***)**

UAP-injected ATS instances ($x + \delta$ **)**

Oregon State SAIL

+4

Web Security & Privacy Lab

University Oregon State

HTML <body> <iframe src = 'http://ad.com/show_ad'> . . .

# of Nodes	URL Length	Semicolon	# of Cookie Read			
+2	+5	TRUE	+4			
UAP						

& Privacy Lab

YOPO implements 46 HTML/JS manipulation functions!

<pre>// Tracking Users user_cookie = document.cookie; for (let i = 1; i <= 4; i++) { getCookie(); }</pre>		Cookie storage
Webpage	48	Graph representation

Experimental Setup

- Target ATS blockers
 - 1) AdGraph [S&P '20]
 - 2) WebGraph* [Security '22]
 - 3) AdFlush [WWW '24]
 - 4) PageGraph** [WWW '20]
 - * We used all content, structural, and flow features for WebGraph.
 - ** We revised PageGraph to support all ATS resource types.
- We measured <u>attack success rate (ASR)</u> against 2,000 target ATS requests.

Attack Success Rate

• ASRs measured against target ATS blockers

ATS blockers	Attack success rate (%)
AdGraph	89.27
WebGraph	71.21
AdFlush	61.91
PageGraph	84.16

Recent ML-based ATS blockers are <u>vulnerable to</u> <u>universal attacks</u> using a single perturbation!

Attack Success Rate

• ASRs measured against target ATS blockers

Adversaries can launch attacks against these ATS blockers <u>at scale</u>!

PageGraph

84.16

KAIST W

Recent ML-based ATS blockers are <u>vulnerable to</u> <u>universal attacks</u> using a single perturbation!

Attack Success Rate

• ASRs measured against target ATS blockers

Where does this vulnerability stem from?

PageGraph

84.16

KAIST (

Recent ML-based ATS blockers are <u>vulnerable to</u> <u>universal attacks</u> using a single perturbation!

Features	Туре	ASR drop (↓)
PARENT_ATTR_ASYNC	Binary	-19.87%
SEMICOLON_IN_URL	Binary	-8.28%
PARENT_ATTR_DEFER	Binary	-5.83%
DOMAIN_NAME_IN_QS	Binary	-5.52%
URL_LENGTH	Numerical	-1.89%

Top-5 most influential features for attacking AdGraph

Features	Туре	ASR drop (↓)
PARENT_ATTR_ASYNC	Binary	-19.87%
SEMICOLON_IN_URL	Binary	-8.28%
PARENT_ATTR_DEFER	Binary	-5.83%
DOMAIN_NAME_IN_QS	Binary	-5.52%
URL_LENGTH	Numerical	-1.89%

features to have a specific combination of values!

Features	UAP Values	ASR drop (↓)	
PARENT_ATTR_ASYNC	TRUE	-19.87%	
SEMICOLON_IN_URL	TRUE	-8.28%	Non-AIS (98.48%)
PARENT_ATTR_DEFER	FALSE	-5.83%	
DOMAIN_NAME_IN_QS	FALSE	-5.52%	
URL_LENGTH	+9	-1.89%	
			ATS (1.52%

PARENT_ATTR_ASYNC	SEMICOLON_IN_URL	PARENT_ATTR_DEFER	DOMAIN_NAME_IN_QS	ATC
FALSE	FALSE	FALSE	TRUE	AIS
DADENIT ATTO ACVAIC				
PARENT_ATTR_ASYNC	SEMICOLON_IN_URL	PARENT_ATTR_DEFER	DOMAIN_NAME_IN_QS	Non ATC
TRUE	TRUE	FALSE	FALSE	NOII-AI S

Features	UAP Values	ASR drop (↓)	
PARENT_ATTR_ASYNC	TRUE	-19.87%	Non-ATS (98.48%)

This arises from the inherent imbalance of binary features in real-world webpages!

FALSE	FALSE	FALSE	TRUE		
PARENT_ATTR_ASYNC	SEMICOLON_IN_URL	PARENT_ATTR_DEFER	DOMAIN_NAME_IN_QS		Non-ATS
TRUE	TRUE	FALSE	FALSE		NUIPAIS
				h	

Walsi Web Security

Mitigation #1: Nullifying Binary Features

 We <u>nullified binary feat</u> when training each ATS

Reduced the ASR by at most 27.52% without any performance drop!

ATS blockers	ASR	Accuracy	Precision	Recall
AdGraph	61.75	92.15	89.11	84.43
	(27.52↓)	(0.49↓)	(0.79↓)	(0.87↓)
WebGraph	63.90	95.39	92.52	92.08
	(7.31↓)	(0.29↓)	(0.74↓)	(0.19↓)
AdFlush	49.82	95.79	93.99	90.77
	(12.09 ↓)	(0.14↓)	(0.35↓)	(0.10↓)
PageGraph	70.28	95.78	92.66	93.06
	(13.88 ↓)	(0.11↓)	(0.24 ↓)	(0.39↓)
	KAIST (X	Web Security & Privacy Jab		

 HTML manipulation <u>decreasing feature values</u> is more likely to <u>break webpages</u>.

 HTML manipulation <u>decreasing feature values</u> is more likely to <u>break webpages</u>.

of NodesURL LengthSemicolon# of Cookie Read-2+5TRUE+4UAP

 HTML manipulation <u>decreasing feature values</u> is more likely to <u>break webpages</u>.

• We **preprocessed input features** before training ATS blockers, thus **misleading perturbations to decrease feature values**.

 As a result, adversaries <u>cannot reflect such manipulation</u> at an HTML level.

Applying both mitigation strategies reduced the ASR **by at most 48.86%** without any performance drop!

ATS blockers	ASR	Accuracy	Precision	Recall
AdGraph	40.41	91.59	85.49	87.05
	(48.86↓)	(1.05↓)	(4.41↓)	(1.75 ↑)
WebGraph	48.55	95.19	91.64	92.38
	(22.66 ↓)	(0.49↓)	(1.62↓)	(0.11 ↑)
AdFlush	42.74	95.68	95.00	90.34
	(19.17↓)	(0.25↓)	(0.34↓)	(0.53↓)
PageGraph	64.51	95.74	92.59	93.26
	(19.65 ↓)	(0.15↓)	(0.31↓)	(0.19↓)
	KAIST (X	Web Security & Privacy Lab		

Breakage Analysis

- We manually inspected 400 webpages manipulated by YOPO.
- We defined 4 breakage types following prior studies.
- Only 14 webpages out of 400 exhibited functionality disruption.

Successfully bypassed AdGraph! **Breakage Analysis** Architecture Talks Magazine Magazine Architecture Talks de Search de Search Awards Videos Awards Videos Interiors Interiors Follow: O O O Follow: 1 2 2 2 0 Opinion Jobs Design Jobs Design Opinion **Events Guide** Lookbooks Comments **Events Guide** Lookbooks Comments zeen zeen Showroom Subscribe Showroom Subscribe School Shows School Shows Courses Courses \equiv = **O** Highlights **OO**Highlights "Ancient ruin" Dezeen's cabin Paola Antonell Foster + Partners Pixelated-brick Dezeen's cabin Paola Antonelli Foster + Partners **Pixelated-brick** "Ancient ruin" picks interview Miami office community centre picks ... intervie... Miami communit **Original webpage** Manipulated webpage No functional breakage

For More Details

- Case study
- Effect of the attack hyperparameters
- Attacking multiple requests
- Different cost models
- <u>https://github.com/WSP-LAB/YOPO</u>

Question?

